FACULTY OF SCIENCE DEPARTMENT OF BIOCHEMISTRY & BIOTECHNOLOGY

M.Sc. Biotechnology (Five Year Integrated) Programme

19IBTT14 Fundamentals of Biochemistry

Course Outcomes:

- CO1: Understand the concept of pH, acids, bases and buffers and discuss the orders of protein structure, properties and functions in detail.
- CO2: Know how simple precursors give rise to large molecules like protein carbohydrates, lipids and nucleic acids.
- CO3: Classify lipids and understand their biological functions
- CO4: Describe the structures of purines and pyrimidines, the organization of nucleic acids and different structural forms of DNA and properties.
- CO5: Understand the biological functions of vitamins and correlate with the deficiency states.
- CO6: Understand the characteristics of enzymes.

19IBTT24 Basic Cell Biology and Genetics

Course Outcomes:

- CO1: Differentiate prokaryotic and eukaryotic cells.
- CO2: Understand the organizational and functional aspects of cells and organelles.
- CO3: Learn membrane structure and transport.
- CO4: Learn how cells undergo mitosis and meiosis.
- CO5: Learn the basic concepts of genetics.
- CO6: Understand the chromosomal variation and its effects.

19IBTP25 Core Practical – I Practicals in Biomolecules, Cell Biology and Genetics

Course Outcomes:

- CO1: Prepare buffers and standard solutions
- CO2: Perform qualitative analysis of carbohydrates and proteins using colorimetry.
- CO3: Identify rancid fat by determining acid by determining acid number.
- CO4: Identify and examine plant cells, tissue types and the phases of cell division.
- CO5: Carry out karyotyping chromosomes, differentiate wild type and mutants of Drosophila

19IBTT33 Physiology

Course Outcomes:

- CO1: Enumerate blood cell count
- CO2: Estimate bleeding, clotting and prothrombin time, haemoglobin and ESR
- CO3: Prepare serum and plasma from blood
- CO4: Perform qualitative analysis of saliva, bile, gastric juice and urine.
- CO5: Appreciate mammalian physiology visually through computer simulation
- CO6: Understand the methodology for BP and ECG measurement

19IBTP34 Core Practical – II Practicals in Physiology

- CO1: Enumerate blood cell count
- CO2: Estimate bleeding, clotting and prothrombin time, haemoglobin and ESR
- CO3: Prepare serum and plasma from blood
- CO4: Perform qualitative analysis of saliva, bile, gastric juice and urine.
- CO5: Appreciate mammalian physiology visually through computer simulation
- CO6: Understand the methodology for BP and ECG measurement

19IBTT43 Bioinstrumentation

Course Outcomes:

- CO1: Apprehend the principles and applications of basic instruments in a biochemistry laboratory.
- CO2 : Understand the principles, components and applications of spectroscopy and radioisotope techniques.
- CO3: Learn the principle, procedure and applications of different chromatography techniques.
- CO4: Apply electrophoretic and hybridization techniques for biomolecule separation.
- CO5: Use the principles and applications of microscopy in various biological fields

19IBTT44 Basic Immunology

Course Outcomes:

- CO1: Specify the lymphoid organs, cells of the immune system and their functions
- CO2 : Apprehend the definition, properties and role of antigens and antibody types and comprehend the role of complement system
- CO3: Understand the genetic mechanism for antibody diversity and know in detail about classical and newer vaccines
- CO4: Understand the immune mechanisms, hypersensitivity and tissue transplantation
- CO5: Describe the function and role of HLA protein and disease association

19IBTT45 Core Practical-III Practicals in Bioinstrumentation and Basic Immunology Course Outcomes:

- CO1: Understand basic principles of spectrophotometry
- CO2: Demonstrate microscopy techniques
- CO3: Perform chromatography techniques
- CO4: Separate macromolecules by agarose gel electrophoresis
- CO5: Identify various types of immune cells and to prepare cell suspension from spleen
- CO6: Understand and perform ELISA technique

19IBTT51 Metabolism

Course Outcomes:

- CO1: Understand the basic bioenergetic principles and cellular synthesis of ATP
- CO2: Understand the reaction pathways of glucose and glycogen metabolism
- CO3: Describe the oxidation and biosynthesis of lipids.
- CO4: Understand the function of ammonia, metabolic fate of amino acids, synthesis of urea, and generation of intermediates of TCA cycle.
- CO5: Understand the de novo and salvage pathways of purine and pyrimidine metabolism and the concept of metabolomics

19IBTT52 Molecular Biology

Course Outcomes:

- CO1: Acquire knowledge on the complexity of eukaryotic genome organization.
- CO2: Understand the molecular mechanism of DNA replication.
- CO3: Understand the types of mutation and repair.
- CO4: Understand the transcription in prokaryotes and eukaryotes, post transcriptional processing and

RNA splicing

- CO5: Assimilate the information flow and steps for protein synthesis and the mechanisms involved.
- CO6: Understand the use of protein synthesis inhibitors and dynamic nature of proteins.

19IBTT53 Recombinant DNA Technology

Course Outcomes:

- CO1: Gain knowledge about cloning and expression vectors and use of restriction enzymes in construction of vectors
- CO2: Study various expression systems and markers
- CO3: Learn and apply the methods of screening recombinants and construction of genomic and DNA libraries.
- CO4: Learn about gene transfer mechanisms and transgenesis in plants and animals
- CO5: Describe the principle and applications of versatile techniques in molecular biology such as DNA sequencing, DNA finger printing and PCR.

19IBTP55 Core Practical– IV Practicals in Metabolism, Molecular Biology and rDNA Technology Course Outcomes:

- CO1: Demonstrate cellular respiration in yeast
- CO2: Isolate and quantitatively analyze DNA and RNA from bacteria and yeast.
- CO3: Differentiate chromosomal and plasmid DNA
- CO4: Demonstrate chromosome/gene transfer in bacteria by conjugation and transformation.
- CO5: Analyze the properties of DNA like molecular size, light absorption, thermal denaturation, and restriction enzyme digestion.
- CO6: To perform restriction enzyme digestion of DNA

19IBTT61 Cell and Tissue Culture

Course Outcomes:

- CO1: Acquire knowledge on organization of cell and tissue culture lab and methods of aseptic maintenance and nutritional requirements.
- CO2: Learn techniques for culturing animal cell line and cloning of cell lines.
- CO3: Understand the types of animal cell culture.
- CO4: Understand the techniques employed for plant tissue culture including single cell, protoplast and callus culture.
- CO5: Appreciate the commercial applications of plant and animal tissue culture in breeding and industry.

19IBTT62 Pharmaceutical Biotechnology

Course Outcomes:

- CO1: Understand the scope of pharmaceutical biotechnology.
- CO2: Understand pharmacokinetics, metabolism and dynamics of drugs
- CO3: Apply the manufacturing principles in formulation of drugs and biopharmaceuticals.
- CO4: Comprehend the production of recombinant proteins, enzymes and carbohydrate and nucleic acid based biopharmaceuticals.
- CO5: Explain the regulatory aspects in drug development and drug approval
- CO6: Understand the steps in drug discovery process

19IBTT63 Bioprocess Technology

- CO1: Exhibit knowledge on the industrially important microrganisms, their growth, isolation, screening and inoculum preparation.
- CO2: Understand and apply the methodology, requirements for different types of fermentation.
- CO3: Learn the steps in downstream processing from product isolation to packaging
- CO4: Apprehend the use of biotechnology for production of high value compounds
- CO5: Know the principles and applications of bioprocessing, metabolic engineering and SCP production

19IBTT64 Biotechnology and Human Welfare

Course Outcomes:

- CO1: List some applications of biotechnology in wide domains of biological sciences.
- CO2: Explain the technology for development of biotechnology product.
- CO3: Understand and solve biomedical and biological problems using biotechnology
- CO4: Understand the technology used in forensic medicine and tissue engineering.
- CO5: Comprehend the applications of stem cell technology, gene therapy and nanobiotechnology

19IBTP65 Core Practical – V Practicals in Cell Culture, Pharmaceutical Biotechnology and Bioprocess Technology Hours

Course Outcomes:

- CO1: Learn the basic techniques like staining and identification of cell culture using microscope and media preparation and sterilization.
- CO2: Evaluate cell division through mitotic index.
- CO3 : Analyze the antioxidant properties of important drugs.
- CO4: Learn the immobilization of yeast/microbes
- CO5: Determine the growth curve, growth rate, yield and hydrolytic activity of microorganisms.
- CO6: Comprehend microbial production of compounds of commercial importance.

19IBTT71 Biomolecules and Metabolism

Course Outcomes:

- CO1: Know the structural organization of proteins and understand the terms domains and motifs in describing protein structure.
- CO2: Understand the basic and alternate structural forms of DNA, types of RNA and their functions.
- CO3: Identify the motifs by which proteins interact with DNA
- CO4: Apprehend the significance of major glycoconjugates, the biological functions of lipids and the composition of lipoproteins.
- CO5: Describe the anabolic and catabolic reactions of major biomolecules.

19IBTT72 Molecular Cell Biology

Course Outcomes:

- CO1: Differentiate prokaryotic and eukaryotic cells.
- CO2: Understand the organizational and functional aspects of cells and organelles.
- CO3: Learn cell-cell communication as well as interaction with outside environment through transport of molecules.
- CO4: Learn how cells respond to external stimuli through the signal transduction mechanisms.
- CO5: Appreciate the molecular events involved in cell division, cell cycle and cell death.

19IBTT73 Enzyme Technology

Course Outcomes:

- CO1: Understand the basic concepts and the kinetics and regulatory role of enzymes.
- CO2: Comprehend the methods for enzyme production and immobilization
- CO3: Design the strategies of enzyme engineering
- CO4: Apply the methods for large scale isolation, purification and downstream processing of enzymes
- CO5: Apprehend the applications of enzymes as tools in industry and as therapeutics in medicine.

19IBTP74 Core Practical – VI Practicals in Biomolecules, Cell Biology and Enzyme TechnologyCourse Outcomes:

CO1: Analyze amino acids by qualitative and quantitative methods.

- CO2: Estimate nucleic acid by chemical methods.
- CO3: Identify and examine plant cells, tissue types and the phases of cell division.
- CO4: Evaluate the factors affecting enzyme activity and immobilize enzymes.

19IBTT81 Applied Microbiology and Immunotechnology

Course Outcomes:

- CO1: Understand the classification of microorganisms and principles of staining.
- CO2: To know about disease transmission, antimicrobial agents and food sanitation
- CO3: Apprehend the importance of immunization practices and the development of novel vaccines.
- CO4: Interpret the association of immune system with cancer, AIDS, autoimmunity and transplantation.
- CO5: Demonstrate techniques involving antigen-antibody reactions and learn their biological applications.

19IBTT82 Advanced Molecular Biology

Course Outcomes:

- CO1: Comprehend genome complexity and the steps in replication
- CO2: Appreciate repair mechanisms and the consequences of DNA mutations and recombination.
- CO3: Figure out the steps in transcription and the significance of post transcriptional processing
- CO4: Gain in-depth knowledge on genetic code, mechanism of protein synthesis and protein sorting.
- CO5:Understand the mechanism involved in gene expression regulation at transcriptional, translational and epigenetic levels.

19IBTT83 Genetic Engineering

Course Outcomes:

- CO1: Understand the concept of cloning, expression of desired genes, and construction of genomic library.
- CO2: Apply genetic engineering principles to perform gene expression analysis and gene manipulation.
- CO3: Understand the principles and applications of RACE, RAPD and PCR.
- CO4: Apply the knowledge on expression of cloned genes for basic and applied research.
- CO5: Comprehend the steps and applications of protein and metabolic engineering.

19IBTP84 Core Practical – VII Practicals in Immunotechnology, Molecular Biology and Genetic Engineering

Course Outcomes:

- CO1: Perform and interpret immunodiffusion and immuno electrophoresis.
- CO2: Isolate and analyze nucleic acids from various sources.
- CO3: Separate proteins in a biological sample by SDS-PAGE and study protein abundance by western blotting.
- CO4: Identify blood groups and Rh factor
- CO5: Undertake PCR analysis and know about real time qPCR

19IBTT91 Analytical Techniques and Nanobiotechnology

- CO1: Understand the principle, components and applications of spectroscopic and radioisotope techniques.
- CO2: Learn the principle, procedure and applications of different chromatographic techniques.
- CO3: Apply electrophoretic and hybridization techniques for biomolecule separation.
- CO4: Apply the techniques of sedimentation and microscopy for research.

CO5: Understand the concept of nanobiotechnology and apply the scientific knowledge for solving problems in biology and medicine.

19IBTT92 Industrial and Environmental Biotechnology

Course Outcomes:

- CO1: Understand types of bioreactors, fermentation process and bioprocessing.
- CO2: Know the requirements for successful operation of downstream processes for production of biopharmaceuticals.
- CO3: Apprehend the harmful effects of pollution and biotechnological measures for pollution control.
- CO4: Apply biotechnological process in waste management, cleanup of environment and agricultural improvement.
- CO5: Comprehend the fundamentals of biodegradation, biotransformation and bioremediation and apply biotechnological innovation in conservation.
- CO6: Recognize the importance of renewable energy sources and green technology.

19IBTT93 Plant Biotechnology

Course Outcomes:

- CO1: Understand and learn the techniques for culturing tissues, single cell, protoplast and anther culture and adopt methods of sterilization and cryopreservation
- CO2: Learn gene transfer methods and molecular marker assisted selection.
- CO3: Evaluate the production and benefits of genetically modified plants.
- CO4: Apply rDNA technology for crop improvement.
- CO5: Recognize the importance of protection of new knowledge and patenting of innovations in research.

19IBTT94 Animal Biotechnology

Course Outcomes:

- CO1: Understand the fundamental principles that underlie cell culture and carryout cell based assays.
- CO2: Comprehend the steps in manipulation of reproduction and acquire knowledge in animal cloning.
- CO3: Understand the methods of gene transfer in animals.
- CO4: Comprehend the methods of producing transgenic animals and benefits of transgenesis and related issues.
- CO5 Recognize the importance of biosafety practices, ethical guidelines for research and entrepreneurship skill development.

19IBTT95 Core Practical – VIII (Practicals in Analytical Techniques, Nanobiotechnology, Industrial and Environmental Biotechnology and Animal Biotechnology)

- CO1: Learn the separation of proteins and biological compounds using electrophoresis and chromatography.
- CO2: Assess drinking water purity and microbial abundance in sewage samples.
- CO3: Synthesize nanoparticles and immobilize microbial cells.
- CO4: Undertake chromosomal studies and test viability of lymphocyte preparation.
- CO5 Culture cells in vitro and perform cell based assays.

19IBTT101 Food and Medical Biotechnology

Course Outcomes:

CO1: Understand the factors influencing food spoilage and apply traditional and modern methods of food preservation.

CO2: Apprehend the uses of fermented foods, enzymes in food industries and concepts in food safety laws and standards.

CO3: Understand the risk factors and molecular aspects of human diseases.

CO4: Use diagnostic kits for screening diseases

CO5: Know the various new therapeutic approaches like nanotherapy, gene therapy and stem cell therapy and related ethical issues

19IBTT102 Genomics, Proteomics and Bioinformatics

Course Outcomes:

CO1: Understand types of gene map, molecular markers and classical and new generation genome sequencing approaches.

CO2: Comprehend genome projects, post-genome analysis and ELSI

CO3: Apply the modern methods for separation, identification, quantitation and structural analysis of proteins

CO4: Apply structural bioinformatics tools to predict and elucidate protein structures and map protein interactions.

CO5: Retrieve, align, analyze and interpret sequence and structural data from databases.

CO6: Construct the phylogenetic tree of different sequences and apply database information for molecular modelling.

19IBTP103 Core Practical – IX (Practicals in Bioinformatics, Food and Medical Biotechnology) Course Outcomes:

CO1: Retrieve, align and analyze protein and nucleic acid sequences and structures

CO2: Adopt appropriate tools to model and visualize proteins

CO3: Acquire skills for preservation of foods and to check food quality

CO4: Quantitatively analyze blood parameters of clinical importance and acquire skills in histology

CO5: Gain and insight into the handling of ELISA, HPTLC, autoanalyser, 2D-PAGE, NMR and XRD.

19IBTA15 Ancillary Offered to Other Departments Biochemistry- Paper I Course Outcomes:

CO1: Understand the bioenergetics principles.

CO2: Understand the classification, nomenclature, kinetics, inhibition and applications of enzymes

CO3: Learn the classification, properties of carbohydrate and understand their biological functions.

CO4: Understand the biochemistry of amino acids and proteins.

CO5: Know the composition of various types of lipids, their biological functions and membrane structure.

CO6: Understand the metabolic reaction of carbohydrates, proteins and lipids.

19IBTA26 Biochemistry-Paper II

Course Outcomes:

CO1: Understand the nutritional and biochemical aspects of vitamins and minerals.

CO2: Learn the structure and functions of nucleic acids.

CO3: Understand the process of DNA replication, damage and repair and the transcription

CO4: Gain knowledge on the phases of translation and fundamental aspects of recombinant DNA technology

CO5: Understand the clinical conditions arising from malnutrition, over nutrition and in born errors in metabolism and biochemical basis of diabetes mellitus, atherosclerosis and jaundice

19IBTP27 Biochemistry Practical (Ancillary)

Course Outcomes:

- CO1: Prepare reagents and buffers
- CO2: Analyze quantitatively / qualitatively carbohydrates, amino acids, and proteins.
- CO3: Determine the characteristics of fatty acids in oil samples.
- CO4: Analyze the concentration of glucose and cholesterol in biological samples.
- CO5: Isolate and estimate DNA and RNA concentrations in biological samples.

19IBTTE16.1 Biofertilizers

Course Outcomes:

- CO1: Discuss the types and importance of biofertilizers
- CO2: Know the isolation and mass multiplication of Azospirillum
- CO3: Describe the types and characteristics of cyanobacteria
- CO4: Understand the types and importance of mycorrhizal association
- CO5: Understand the risk factors and significance of organic agriculture

19IBTTE16.2 Evolutionary Biology

Course Outcomes:

- CO1: Discuss the Pre-Darwinian ideas
- CO2: Know the evidences of evolution
- CO3: Describe the sources and forces of evolution
- CO4: Understand the evolution of fungi and plants
- CO5: Understand the evolution of humans

19IBTTE16.3 Public Health and Management

Course Outcomes:

- CO1: Discuss the sources and causes of environmental hazards
- CO2: Know the types, causes, sources and prevention of pollution
- CO3: Describe the types and characteristics of wastes and disposal
- CO4: Understand the social and economic factors of communicable diseases
- CO5: Understand the risk factors, symptoms and treatment of non-communicable diseases.

19IBTTE36.1 Natural Resource Management

Course Outcomes:

- CO1: Understand the natural resources and sustainable utilization
- CO2: Apprehend the utilization of land and water
- CO3: Understand the biological resources and forests
- CO4: Understand the renewable and non-renewable sources of energy
- CO5: Describe the contemporary practices in resource management

19IBTTE36.2 Animal Behaviour and Chronobiology

- CO1: Understand about patterns and mechanisms of behaviour
- CO2: Apprehend the concepts of social behaviour and altruism
- CO3: Understand about anatomy and physiology of circadian clocks
- CO4: Understand the basic concepts of chronoendocrinology, chronopharmacology and chronotherapy
- CO5: Describe the function and role of circadian clock genes in Drosophila and mammals

19IBTTE36.3 Plant Biochemistry

Course Outcomes:

- CO1: Understand plant cell structure and photosynthesis
- CO2: Apprehend the concepts of respiration in plants
- CO3: Understand about nitrogen metabolism
- CO4: Understand the basic concepts of plant hormones and regulation of plant growth
- CO5: Describe the functions of secondary metabolites

19IBTTE55.1 Ecology

Course Outcomes:

- CO1: Understand the importance of ecology
- CO2: Understand the concepts in population ecology
- CO3: Describe the components and types of ecosystem
- CO4: Understand the salient features of community ecology
- CO5: Understand the fundamentals of behavioural ecology

19IBTTE55.2 Biodiversity

Course Outcomes:

- CO1: Understand the components of biodiversity
- CO2: Understand the tools in the study of biodiversity
- CO3: Describe the basics of plant diversity
- CO4: Understand the salient features of bio-prospecting
- CO5: Understand the fundamentals of microbial diversity and Overview of methods in taxonomy of bacteria

19IBTTE55.3 Wild Life Conservation and Management

Course Outcomes:

- CO1: Understand the ethics of wildlife conservation
- CO2: Understand the salient features of habitat analysis
- CO3: Describe the basics of human-wildlife interactions
- CO4: Understand the concepts of management
- CO5: Understand the fundamentals of sustainable wildlife management

19IBTTE85.1 Clinical Biochemistry

Course Outcomes:

- CO1: Comprehend the genetic diseases
- CO2. Understand the complications and treatment of liver and pancreatic disorders
- CO3. Appreciate the biochemical and molecular basis of cancer and AIDS.
- CO4. Gain knowledge on protein energy malnutrition and obesity.

19IBTTE85.2 Basic Endocrinology

- CO1: Understand the general characteristics of hormone and hypothalamic and pituitary hormone
- CO2:. Learn the functions of thyroid and parathyroid secretions and disorders associated with hypo and hyper secretions.
- CO3: Gain an understanding of the biological effects of adrenal hormones.
- CO4: Know the hormones of the pancreas and clinical conditions associated with pancreatic insufficiency as well as about GI tract hormones.
- CO5: Understand the gonadal hormone functions and associated clinical conditions.

19IBTTE85.3 Developmental Biology

Course Outcomes:

- CO1: Understand the basics of embryo development in vertebrates and invertebrates.
- CO2: Learn the events in the early embryonic development.
- CO3: Understand the development of organs and developmental pattern
- CO4: Understand the events taking place during post embryonic development.
- CO5: Understand the medical implications of developmental biology.

19IBTTE96.1 Medical Laboratory Technology

Course Outcomes:

- CO1: Perform the basic haematology techniques and undertake biochemical analysis of clinical samples
- CO2: Understand the tests performed in clinical microbiology lab
- CO3: Undertake histological analysis of samples.
- CO4: Comprehend the basic techniques performed in clinical immunology laboratory.
- CO5: Know about quality control, lab accredition and automation.

19IBTTE96.2 Biotechnology Management

Course Outcomes:

- CO1: Develop an understanding of the fundamental topics on management.
- CO2: Gain knowledge on business economics and project management.
- CO3: Get a strong foundation on commercialization of biotechnology products.
- CO4: Get the required knowledge to lead and administer biotechnology companies.
- CO5: Undertake entrepreneurship ventures.

19BIOX215.1 Interdepartment Electives Offered to Other Departments Basic Biochemistry Course Outcomes:

- CO1: Understand the structure, classification and properties of carbohydrates and amino acids
- CO2: Gain knowledge on the hierarchical organisation and properties of proteins, structure and properties of lipids and nucleic acids
- CO3: Comprehend the functions and kinetic characteristics of enzymes
- CO4: Understand the major metabolic pathways of biomolecules

19BIOX215.2 Basic Biotechnology

Course Outcomes:

- CO1: Know the principles of bioprocess engineering and downstream processing,
- CO2: Understand the methods applied for waste water treatment and uses of enzymes in industries.
- CO3: Learn the steps involved in cloning and the importance of biofertilizers and biopesticides.
- CO4: Know the basics of food biotechnology and applications of enzymes in food industry.
- CO5: Learn about the production of transgenic plants and animals.

19BIOX315.1 Biochemical Techniques

- CO1: Understand the basic principle, instrumentation and applications of spectroscopy and
- CO2: Comprehend the principle and application of radioisotope techniques
- CO3: Understand the principle, instrumentation and applications of electrophoresis and blotting
- CO4: Appreciate the principles and applications of chromatography and centrifugation Technique

19BIOX315.2 Immunology

Course Outcomes:

- CO1. Know the cells and organs of the immune system and about antigens and antibodies
- CO2. Appreciate complement system and types of immunity.
- CO3. Understand vaccination, antibody diversity and transplantation
- CO4. Gain knowledge on immunochemical techniques

DEPARTMENT OF BIOCHEMISTRY & BIOTECHNOLOGY

M.Sc. Biotechnology (Two-Year) Programme

19BITC 101 Biomolecules and Metabolism

Course Outcomes:

- CO1: Know the structural organization of proteins and understand the terms domains and motifs in describing protein structure.
- CO2: Understand the basic and alternate structural forms of DNA, types of RNA and their functions.
- CO3: Identify the motifs by which proteins interact with DNA
- CO4: Apprehend the significance of major glycoconjugates, the biological functions of lipids and the composition of lipoproteins.
- CO5: Describe the anabolic and catabolic reactions of major biomolecules.

19BITC 102 Molecular Cell Biology

Course Outcomes:

- CO1: Differentiate prokaryotic and eukaryotic cells.
- CO2: Understand the organizational and functional aspects of cells and organelles.
- CO3: Learn cell-cell communication as well as interaction with outside environment through transport of molecules.
- CO4: Learn how cells respond to external stimuli through the signal transduction mechanisms.
- CO5: Appreciate the molecular events involved in cell division, cell cycle and cell death.

19BITC 103: Enzyme Technology

Course Outcomes:

- CO1: Understand the basic concepts, kinetics and regulatory role of enzymes.
- CO2: Comprehend the methods for enzyme production and immobilization
- CO3: Design the strategies of enzyme engineering
- CO4: Apply the methods for large scale isolation, purification and downstream processing of enzymes
- CO5: Apprehend the applications of enzymes as tools in industry and as therapeutics in medicine.

19BITP 104: Core Practical – 1 Practicals in Biomolecules, Cell Biology and Enzyme Technology Course Outcomes:

- CO1: Analyze amino acids by qualitative and quantitative methods.
- CO2: Estimate nucleic acid by chemical methods.
- CO3: Identify and examine plant cells
- CO4: Examine different tissue types and the phases of cell division.
- CO5: Evaluate the factors affecting enzyme activity
- CO6: Examine the effect of inhibitor on enzyme activity and immobilize enzymes.

19BITC 201: Applied Microbiology and Immunology

Course Outcomes:

CO1: Understand the classification of microorganisms and principles of staining.

- CO2: To know about disease transmission, antimicrobial agents and food sanitation
- CO3: Apprehend the importance of immunization practices and the development of novel vaccines.
- CO4: Interpret the association of immune system with cancer, AIDS, autoimmunity and transplantation.
- CO5: Demonstrate techniques involving antigen-antibody reactions and learn their biological applications.

19BITC 202: Advanced Molecular Biology

Course Outcomes:

- CO1: Comprehend genome complexity and the steps in replication
- CO2: Appreciate repair mechanisms and the consequences of DNA mutations and recombination.
- CO3: Figure out the steps in transcription and the significance of post transcriptional processing
- CO4: Gain in-depth knowledge on genetic code, mechanism of protein synthesis and protein sorting.
- CO5: Understand the mechanisms involved in gene expression regulation at transcriptional, translational and epigenetic levels.

19BITC 203: Genetic Engineering

Course Outcomes:

- CO1: Understand the concept of cloning, expression of desired genes, and construction of genomic library.
- CO2: Apply genetic engineering principles to perform gene expression analysis and gene manipulation.
- CO3: Understand the principles and applications of RACE, RAPD and PCR
- CO4: Apply the knowledge on expression of cloned genes for basic and applied research.
- CO5: Comprehend the steps and applications of protein and metabolic engineering

19BITP 204: Core Practical Practicals in Immunotechnology, Molecular Biology and Genetic Engineering

Course Outcomes:

- CO1: Perform and interpret immunodiffusion and immuno electrophoresis.
- CO2: Isolate and analyze nucleic acids from various sources.
- CO3: Separate proteins in biological samples by SDS-PAGE and study protein abundance by western blotting.
- CO4: Identify blood groups and Rh factor
- CO5: Undertake PCR analysis and know about real time qPCR

19BITC 301: Analytical Techniques and Nanobiotechnology

Course Outcomes:

- CO1: Understand the principle, components and applications of spectroscopic and radioisotope techniques.
- CO2: Learn the principle, procedure and applications of different chromatographic techniques.
- CO3: Apply electrophoretic and hybridization techniques for biomolecule separation.
- CO4: Apply the techniques of sedimentation and microscopy for research.
- CO5: Understand the concept of nanobiotechnology and apply the scientific knowledge for solving problems in biology and medicine.

19BITC 302: Industrial and Environmental Biotechnology

- CO1: Understand types of bioreactors, fermentation process and bioprocessing.
- CO2: Know the requirements for successful operation of downstream processes for production of biopharmaceuticals.

- CO3: Apprehend the harmful effects of pollution and biotechnological measures for pollution control.
- CO4: Apply biotechnological process in waste management, cleanup of environment and agricultural improvement.
- CO5: Comprehend the fundamentals of biodegradation, biotransformation and bioremediation and apply biotechnological innovation in conservation.
- CO6: Recognize the importance of renewable energy sources and green technology.

19BITC 303 Plant Biotechnology

Course Outcomes:

- CO1: Understand and learn the techniques for culturing tissues, single cell, protoplast and anther culture and adopt methods of sterilization and cryopreservation
- CO2: Learn gene transfer methods and molecular marker assisted selection.
- CO3: Evaluate the production and benefits of genetically modified plants.
- CO4: Apply rDNA technology for crop improvement.
- CO5: Recognize the importance of protection of new knowledge and patenting of innovations in research

19BITC 304 Animal Biotechnology

Course Outcomes:

- CO1: Understand the fundamental principles that underlie cell culture and carryout cell based assays.
- CO2: Comprehend the steps in manipulation of reproduction and acquire knowledge in animal cloning.
- CO3: Understand the methods of gene transfer in animals.
- CO4: Comprehend the methods of producing transgenic animals and benefits of transgenesis and related issues.
- CO5: Recognize the importance of biosafety practices, ethical guidelines for research and entrepreneurship skill development.

19BITP 305 Core Practical – 3 Practicals in Analytical Techniques, Nanobiotechnology, Industrial and Environmental Biotechnology, and Animal Biotechnology

Course Outcomes:

- CO1: Learn the separation of proteins and biological compounds using electrophoresis and chromatography.
- CO2: Assess drinking water purity and microbial abundance in sewage samples.
- CO3: Synthesize nanoparticles and immobilize microbial cells.
- CO4: Undertake chromosomal studies and test viability of lymphocyte preparation.
- CO5: Culture cells in vitro and perform cell based assays.

19BITC 401 Food and Medical Biotechnology

- CO1: Understand the factors influencing food spoilage and apply traditional and modern methods of food preservation.
- CO2: Apprehend the uses of fermented foods, enzymes in food industries and concepts in food safety laws and standards.
- CO3: Understand the risk factors and molecular aspects of human diseases.
- CO4: Use diagnostic kits for screening diseases and understand recent molecular diagnostic methods.
- CO5: Know the new therapeutic approaches like nanotherapy, gene therapy and stem cell therapy and related ethical issues

19BITC 402 Genomics, Proteomics and Bioinformatics

Course Outcomes:

- CO1: Understand types of gene map, molecular markers and classical and new generation genome sequencing approaches.
- CO2: Comprehend genome projects, post-genome analysis and ELSI
- CO3: Apply the modern methods for separation, identification ,quantitation and structural analysis of proteins
- CO4: Apply structural bioinformatics tools to predict and elucidate protein structures and map protein interactions.
- CO5: Retrieve, align, analyze and interpret sequences and structural data from databases.
- CO6: Construct phylogenetic tree of different sequences and apply database information for molecular modelling.

19BITP 403 Core Practical – 4 Credits: 6 Practicals in Bioinformatics, Food and Medical Biotechnology

Course Outcomes:

- CO1: Retrieve, align and analyze protein and nucleic acid sequences and structures
- CO2: Adopt appropriate tools to model and visualize proteins
- CO3: Acquire skills for preservation of foods and to check food quality
- CO4: Quantitatively analyze blood parameters of clinical importance and acquire skills in histology
- CO5: Understand the handling of ELISA, HPTLC, autoanalyser, 2D-PAGE, NMR and XRD.

Department Electives (DE)

19BITE 205.1 Developmental Biology

Course Outcomes:

- CO1: Understand the basics of embryo development in vertebrates and invertebrates.
- CO2: Learn the events in the early embryonic development.
- CO3: Understand the development of organs and developmental pattern
- CO4: Understand the events taking place during post embryonic development.
- CO5: Understand the medical implications of developmental biology.

19BITE 205.2 Clinical Biochemistry

Course Outcomes:

- CO1: Comprehend the genetic diseases
- CO2: Understand the complications and treatment of liver and pancreatic disorders
- CO3: Appreciate the biochemical and molecular basis of cancer and AIDS.
- CO4: Gain knowledge on protein energy malnutrition and obesity

19BITE 205.3 Basic Endocrinology

- CO1: Understand the general characteristics of hormone and hypothalamic and pituitary hormone
- CO2: Learn the functions of thyroid and parathyroid secretions and disorders associated with hypo and hyper secretions.
- CO3: Gain an understanding of the biological effects of adrenal hormones.
- CO4: Know the hormones of the pancreas and clinical conditions associated with pancreatic insufficiency as well as about GI tract hormones.
- CO5: Understand the gonadal hormone functions and associated clinical conditions.

19BITE 306.1 Biotechnology Management

Course Outcomes:

- CO1: Develop an understanding of the fundamental topics on management.
- CO2: Gain knowledge on business economics and project management.
- CO3 Get a strong foundation on commercialization of biotechnology products.
- CO4: Get the required knowledge to lead and administer biotechnology companies.
- CO5: Undertake entrepreneurship ventures

19BITE 306.2 Medical Laboratory Technology

Course Outcomes:

- CO1: Perform the basic haematology techniques and undertake biochemical analysis of clinical samples
- CO2: Understand the tests performed in clinical microbiology lab
- CO3: Undertake histological analysis of samples.
- CO4: Comprehend the basic techniques performed in clinical immunology laboratory.
- CO5: Know about quality control, lab accredition and automation

19BITE 306.3 Drug Design and Drug Development

Course Outcomes:

- CO1: Understand the basic concepts of pharmacokinetics
- CO2: Know about mechanism of drug action
- CO3: Gain knowledge concepts on drug designing
- CO4: Understand the technologies used in drug development.
- CO5: Understand the strategies for new drug discovery and regulatory bodies concerned with drug approval

Interdepartment Electives Offered to Other Departments

19BIOX 215.1 Basic Biochemistry

Course Outcomes:

- CO1: Understand the structure, classification and properties of carbohydrates and aminoacids
- CO2: Gain knowledge on the hierarchical organisation and properties of proteins, structure and properties of lipids and nucleic acids
- CO3: Comprehend the functions and kinetic characteristics of enzymes
- CO4: Understand the major metabolic pathways of biomolecules

19BIOX 215.2 Basic Biotechnology

Course Outcomes:

- CO1: Know the principles of bioprocess engineering and downstream processing,
- CO2: Understand the methods applied for waste water treatment and uses of enzymes in industries
- CO3: Learn the steps involved in cloning and the importance of biofertilizers and biopesticides.
- CO4: Know the basics of food biotechnology and applications of enzymes in food industry.
- CO5: Learn about the production of transgenic plants and animals

19BIOX 315.1 Biochemical Techniques

- CO1: Understand the basic principle, instrumentation and applications of spectroscopy and
- CO2: Comprehend the principle and application of radioisotope techniques
- CO3: Understand the principle, instrumentation and applications of electrophoresis and blotting
- CO4: Appreciate the principles and applications of chromatography and centrifugation Technique

19BIOX 315.2 Immunology

Course Outcomes:

- CO1: Know the cells and organs of the immune system and about antigens and antibodies
- CO2: Appreciate complement system and types of immunity.
- CO3: Understand vaccination, antibody diversity and transplantation
- CO4: Gain knowledge on immunochemical techniques

DEPARTMENT OF BIOCHEMISTRY & BIOTECHNOLOGY M.Sc. Biochemistry (Two-Year) Programme

19BIOC 101: Biomolecules

Course Outcomes:

- CO1: Appreciate the hierarchical organisation of various biomolecules.
- CO2: Understand the various orders of protein structure, classification, properties and biological importance of proteins.
- CO3: Evaluate the structure and hierarchial organisation of nucleic acids with their biological functions.
- CO4: Analyse the realtionship between the structure and biological role of glycosaminoglycans and glycoconjugates.
- CO5: Acquire knowledge on the building blocks of lipids, classification and properties as well as lipoprotein and composition of membranes.

19BIOC 102: Cell Biology and Genetics

Course Outcomes:

- CO1: Understand the molecular organization of cells and tissues, cell cell communication, cell junctions, cytoskeleton and extracellular matrix proteins.
- CO2: Appreciate membrane composition and transport mechanisms.
- CO3: Understand cell division, differentiation, cell cycle and cell death
- CO4: Comprehend the steps in cell and tissue culture
- CO5: Understand Mendelian principles of genetics, chromosome variation, and population genetics.

19BIOC 103: Enzymes

- At the end of the course, the student will be able to
- CO1: Understand the characteristics, classification, isolation and assay of enzymes.
- CO2: Analyse the factors that influence enzyme kinetics.
- CO3: Evaluate the mechanisms and regulation by enzyme modulation
- CO4: Translate the basic concepts of enzymology to industrial and medical applications

19BIOP 104: Core Practical - 1 Practicals in Biomolecules, Cell Biology, Genetics and Enzymes Course Outcomes:

- CO1: Independently undertake qualitative and quantitative analysis of biomolecules
- CO2: Distinguish different cell types
- CO3: Culture cells in vitro and perform cell-based assays
- CO4: Assess various factors influencing enzyme kinetics and undertake enzyme immobilization.
- CO5: Differentiate wild type and mutants of *Drosophila melanogaster*

19BIOC 201: Metabolism and Regulation

Course Outcomes:

- CO1: Understand the basic principles of bioenergetics and mitochondrial mechanisms in energy production.
- CO2: Appreciate the reaction pathways by which carbohydrates and lipids are synthesised and degraded and know the biochemistry of photosynthesis.
- CO3: Comprehend the metabolic fates of amino acids and the features of protein catabolism
- CO4: Know the biochemistry of porphyrins, purines and pyrimidines and comprehend the integral relationship of metabolic pathways.
- CO5: Know the clinical conditions arising from metabolic dysregulation.

19BIOC 202: Immunology

Course Outcomes:

- CO1: Describe the components of immune system and the role of cells and organs in immune response.
- CO2: Learn the latest developments in vaccine production and effector mechanisms
- CO3: Understand in depth the abnormal immunologic manifestation in transplantation and hypersensitivity and the genetic mechanisms in antibody diversity.
- CO4: Gain a clear view of immunological mechanisms with a focus on management of diseases cancer, AIDS and autoimmune disorders.
- CO5: Comprehend the principle and application of various techniques ranging from immunodiffusion to ELISA, RIA and flow cytometry.

19BIOC 203: Molecular Biology

Course Outcomes:

- CO1: Compare the genome structure of prokaryotes and eukaryotes and appreciate the complexity of eukaryotic genome.
- CO2: Discuss the mechanisms of DNA replication, repair and recombination.
- CO3: Explain the enzymes and processes involved in RNA biosynthesis, protein biosynthesis and degradation.
- CO4: Comprehend protein targeting and the role of ubiquitin in protein degradation and chaperones in folding
- CO5 Gain an understanding on the regulation of gene expression at transcriptional, translational and epigenetic levels.

19BIOP 204: Core Practical -2 practicals in Immunology and Molecular Biology Course Outcomes:

- CO1: Classify and identify human blood groups and Rh factor.
- CO2; Demonstrate Ag-Ab interaction in vitro by immunoprecipitation and electrophoresis.
- CO3: Analyze quantitatively antigen/antibody reaction by ELISA
- CO4: Extract nucleic acids from biological sources
- CO5: Analyze DNA and RNA by chemical and electrophoretic methods
- CO6: Analyze DNA transfer mechanism in bacteria

19BIOC 301: Analytical Techniques

Course Outcomes:

CO1: Obtain necessary knowledge to perform techniques essential to biochemistry

CO2: Explain the instrument components, principles of operation and applications of spectroscopy, radioisotope technique and microscopy.

CO3: Exhibit a knowledge base in handling different chromatographic techniques and to make an appropriate choice based on nature of the sample.

CO4: To differentiate the principles of paper, ion exchange, gel and affinity chromatography.

CO5: Apply practically the knowledge acquired on centrifugation for separation of biological samples and isolation of cell organelles.

CO6: Gain knowledge on principles of electrophoresis and learn the procedure for 2D Gel electrophoresis, blotting and hybridisation techniques.

19BIOC 302: Molecular Endocrinology and Signalling

Course Outcomes:

CO1: Understand the role of hypothalamo-pituitary axis in the coordination of nervous and endocrine system.

CO2: Learn the functions pituitary, thyroid and parathyroid secretions and associated disorders

CO3: Gain an understanding of the actions of adrenal and gonadal, gastrointestinal tract and pancreatic hormones and disorders associated with their hypo and hyper secretion

CO4: Know the different types of signaling, ligand –receptor interaction, cellular messengers of hormones and response pathways triggered by hormonal stimuli

19BIOC 303: Physiology and Nutrition

Course Outcomes:

CO1: Understand the fundamental components and functions of nervous, digestive, urinary and muscular system.

CO2: State the normal and abnormal composition, functions and clinical significance of investigating body fluids.

CO3: Understand the basic concepts of acid-base and water-electrolyte homeostasis and pathophysiological mechanisms of diseases arising due to imbalance.

CO4: Be aware of energy requirements for humans, malnutrition disorders in children and role of vitamins and minerals in maintaining health.

19BIOC 304: Basic Biotechnology

Course Outcomes:

CO1: Master the skills associated with growth, cultivation and screening of industrial microorganisms.

CO2: Understand the bioprocess techniques for production of industrially important compounds,

SCP, biofertilizers and biopesticides and their applications.

CO3: Comprehend the methodology and applications of microbial mining and bioremediation

CO4: Apprehend the role of rDNA technology in constructing vectors and cDNA and genomic libraries.

CO5: Know the advantages and disadvantages of transgenic plants and foods.

CO6: Know the methods of DNA sequencing, protein engineering, SDM, gene knock in, knockout experiments and learn in detail about human genome project.

CO7: Learn the recent technological advances like precise genome editing, directed evolution and synthetic biology.

19BIOP 305: Core Practical – 3 Practicals in Analytical Techniques, Molecular Endocrinology, Physiology and Biotechnology

Course Outcomes:

- CO1: Show expertise in a variety of separation techniques for lipids, DNA and proteins.
- CO2: Gain skill in handling PCR machine, SDS-PAGE, TLC, and HPLC.
- CO3: Undertake isolation of subcellular organelles.
- CO4: Perform hematology studies
- CO5: Quantitate the levels of vitamin C and hormones in blood
- CO6: Quantitatively analyze water sample and sewage for microbial contamination and growth respectively.

19BIOC 401: Clinical Biochemistry

Course Outcomes:

- CO1: To describe the molecular basis of genetic and acquired disorders.
- CO2: Understand the etiology, findings and management of diabetes, atherosclerosis, and Cancer.
- CO3: Describe and explain the diseases of the major organs and systems, organ functional tests for diagnosis and management.
- CO4: Compherend the principles of recent advancements in diagnosis and therapy.

19BIOC 402: Genomics, Proteomics and Bioinformatics

Course Outcomes:

- CO1: Understand the types and uses of gene mapping, molecular markers for mapping and classical and new generation genome sequencing approaches.
- CO2: Comprehend genome projects, post-genome analysis and ELSI
- CO3: Apply the modern methods for separation, identification ,quantitation and structural analysis of proteins
- CO4: Apply structural bioinformatics tools to predict and elucidate protein structures and map protein- protein interactions.
- CO5: Retrieve, align, analyze and interpret sequence and structural data from databases.
- CO6: Construct the phylogenetic tree of different sequences and apply database information for molecular modelling.

19BIOP 403: Core Practical - 4 Practicals in Clinical Biochemistry and Bioinformatics Course Outcomes:

- CO1: Describe the principles associated with the biochemical measurements performed in clinical laboratory
- CO2: Quantitatively analyze blood constituents and assay enzymes of diagnostic importance
- CO3: Interpret the result patterns in relation to normal level.
- CO4: Apply the knowledge in bioinformatics for phylogenetic analysis of sequences, SNP detection and protein sequence analysis

Department Electives (DE)

19BIOE 205.1: Developmental Biology

- CO1: Understand the basics of embryo development in vertebrates and invertebrates
- CO2: Learn the events in the early embryonic development.
- CO3: Understand the development of organs and developmental pattern
- CO4: Understand the events taking place during post embryonic development.
- CO5: Understand the medical implications of developmental biology.

19BIOE 205.2: Environmental and Medical Biotechnology

Course Outcomes:

- CO1: Apprehend the harmful effects of pollution and biotechnological measures for pollution control.
- CO2: Apply biotechnological process in waste management, cleanup of environment and agricultural improvement
- CO3: Comprehend the fundamentals of biodegradation, biotransformation and bioremediation and apply biotechnological innovation in conservation.
- CO4: Recognize the importance of renewable energy sources and green technology.
- CO4: Use diagnostic kits for screening diseases and understand recent molecular diagnostic methods
- CO5: Know the various new therapeutic approaches like nanotherapy, gene therapy and stem cell therapy.

19BIOE 306.1 Genetic Engineering and Nanobiotechnology

Course Outcomes:

- CO1: Understand the basic principles of recombinant technology,
- CO2: Appreciate the mechanisms of cloning,
- CO3; Comprehend the methods of gene transfer
- CO4: Understand the principle and applications of DNA sequencing, DNA fingerprinting and PCR.
- CO5: Understand the concept and applications of nanobiotechnology.

19BIOE 306.2 Medical Laboratory Technology

Course Outcomes:

- CO1: Perform the basic haematology techniques and undertake biochemical analysis of clinical samples
- CO2: Understand the tests performed in clinical microbiology lab.
- CO3: Undertake histological analysis of samples
- CO4: Comprehend the basic techniques performed in clinical immunology laboratory.
- CO5: Know about quality control, lab accredition and automation

19BIOE 306.3 Drug Design and Drug Action

Course Outcomes:

- CO1: Understand the basic concepts of pharmacokinetics
- CO2: Know about mechanism of drug action
- CO3: Gain knowledge concepts on drug designing
- CO4: Understand the technologies used in drug development
- CO5 Understand the strategies for new drug discovery and regulatory bodies concerned with drug approval.

Interdepartmental Electives Offered to Other Departments

19BIOX 215.1 Basic Biochemistry

Course Outcomes:

- CO1: Understand the structure, classification and properties of carbohydrates and aminoacids
- CO2: Gain knowledge on the hierarchical organisation and properties of proteins, structure and properties of lipids and nucleic acids
- CO3: Comprehend the functions and kinetic characteristics of enzymes
- CO4: Understand the major metabolic pathways of biomolecules

19BIOX 215.2 Basic Biotechnology

- CO1: Know the principles of bioprocess engineering and downstream processing,
- CO2: Understand the methods applied for waste water treatment and uses of enzymes in industries

- CO3: Learn the steps involved in cloning and the importance of biofertilizers and biopesticides.
- CO4: Know the basics of food biotechnology and applications of enzymes in food industry.
- CO5: Learn about the production of transgenic plants and animals.

19BIOX 315.1 Biochemical Techniques

Course Outcomes:

- CO1: Understand the basic principle, instrumentation and applications of spectroscopy and
- CO2: Comprehend the principle and application of radioisotope techniques
- CO3: Understand the principle, instrumentation and applications of electrophoresis and blotting
- CO4: Appreciate the principles and applications of chromatography and centrifugation Technique

19BIOX 315.2 Immunology

- CO1: Know the cells and organs of the immune system and about antigens and antibodies
- CO2: Appreciate complement system and types of immunity.
- CO3: Understand vaccination, antibody diversity and transplantation
- CO4: Gain knowledge on immunochemical techniques